Product Description

Heavy Industry Parts Hot Forging Steel Cylindrical Gear

Description

Product name

Cylindrical Gear

OEM

Acceptable

Materials

45/AISI1045 etc.Carbon Steel
20Cr,40Cr,40MnB,35SiMn,20CrMnTi,30CrMnSi,20Cr2Ni4 etc.Alloy Steel

Max.Size

Diameter≤φ10000mm

Manufacturing
Process

Electroslag Remelting Hot Forging Turning Gear hobbing Gear milling Grinding

Heat Treatment

Normalizing Quenching Tempering Annealing Carburizing Nitriding Induction hardening

Test item and method

Chemical composition: Spectrum Analysis;
Hardness:HRC/HV
Internal defects: ultrasonic flaw detector
Surface defect detection: Magnetic powder detector
Radial run-out: gear radial runout tester
Base tangent length: Gear tooth micrometer
Tooth thickness detection: Tooth thickness vernier caliper
Round rod span detection: Gear span bar distance measuring instrument

Application

Gear Reducer Heavy Industry

OEM/ODM Request Is Very Welcome!

Production Process
We can produce various specifications of gear, meanwhile, we can also provide gear blanks.
 

We have a full set of production processes and testing instruments for forging, heat treatment and machining.
 

We have 5 medium frequency furnaces and 5 electric slag heavy furnaces, which can produce 1 ton-18 tons of various types of alloy steel, with an annual capacity of 10,000 tons. The main characteristics of electroslag remelting are that it can flexibly produce various types of special steel in size and batch, with pure composition, uniform and dense crystal organization.
 

Natural gas digital display computer temperature control heating CZPT can accurately control the heating temperature of raw materials.
 

800T fast forging machine can quickly forge products, 3150T and 5000T oil press can forge heavy-duty axle products. They can guarantee the forging ratio required by the product, and ensure a good metallographic structure.
 

More than 20 digital display resistance furnaces can be used for normalizing, quenching and tempering products, at the same time, there are induction quenching and carburization process, so as to ensure the mechanical performance requirements of the gear

Inspection
SYI regards Quality as the essential part of our business success. Based on your requirements, we have raw material in-coming inspection, process control and pre-shipment inspection. With advanced test equipment such as spectrometer, CMM, tensile strength tester, microscope, hardness tester, etc, CZPT is able to apply sufficient chemical and physical inspection. According to your request, we are also capable to do X-Ray, Magnetic Testing, Ultrasonic Testing and liquid Penetrant Examination.

Company

About Us

SYI provides OEM Casting & Forging services based on your drawings , samples , or just an idea ! After technical analysis and individual QCP for each project , the most suitable manufacture process will be recommended.

SYI starts our business since 1990 ‘ s of machined and un-machined in a variety of industry . We have over 100,000 products till now with the support of a specialized team including 50 engineers , inspectors and customer services .

Cooperative Brand

Processing Object: Metal
Molding Style: Forging
Application: Heavy Industry Machine
Material: Steel
Heat Treatment: Normalizing Quenching Tempering Carburizing Ni
Standard: ASTM
Customization:
Available

|

Customized Request

herringbone gear

How do herringbone gears contribute to smooth power transmission?

Herringbone gears contribute to smooth power transmission through their unique design and characteristics. Here’s a detailed explanation of how herringbone gears achieve smooth power transmission:

  • Opposing Helix Angles: Herringbone gears have a double helical tooth profile with opposing helix angles on each side. The helix angles are inclined in opposite directions to each other. This design feature helps to cancel out axial and radial forces that would occur in single helical gears. The opposing helix angles create a self-centering effect that promotes proper tooth engagement and load distribution, reducing gear vibrations and ensuring smooth power transmission.
  • Reduced Vibration and Noise: The opposing helix angles of the herringbone gear teeth minimize gear vibrations during operation. When the teeth of one side of the gear mesh with the teeth of the other side, the opposing helix angles create a balanced force distribution that counteracts any tendency for the gear to move laterally. This results in reduced vibration and noise levels, making herringbone gears ideal for applications where quiet operation is desired, such as precision machinery and automotive transmissions.
  • Large Contact Area: Herringbone gears have a larger contact area compared to spur gears. The double helical tooth profile allows for overlapping engagement of the gear teeth, resulting in a larger contact ratio. This increased contact area distributes the transmitted torque over more teeth, reducing the stress on individual teeth and promoting smoother power transmission. The larger contact area also helps to minimize wear and improve the overall durability of the gear system.
  • Enhanced Load Distribution: The double helical tooth design of herringbone gears provides improved load distribution along the tooth surfaces. The opposing helix angles help to evenly distribute the transmitted load between the two sides of the gear. This balanced load distribution minimizes localized stress concentrations and reduces the risk of tooth failure. It ensures that the torque is transmitted smoothly across the entire tooth profile, resulting in efficient power transmission and reduced wear.
  • Efficient Torque Transfer: Herringbone gears offer efficient torque transfer due to their large contact area and overlapping tooth engagement. The double helical tooth profile provides a larger contact ratio compared to spur gears, allowing for a greater number of teeth in contact at any given time. This increased contact ratio distributes the torque more evenly, reducing the risk of tooth shear and improving power transmission efficiency. The efficient torque transfer contributes to smooth and reliable operation of the gear system.

These factors combined – opposing helix angles, reduced vibration and noise, large contact area, enhanced load distribution, and efficient torque transfer – contribute to the smooth power transmission capabilities of herringbone gears. Their design minimizes the effects of axial and radial forces, promotes balanced load distribution, and ensures reliable and efficient power transfer in various applications.

herringbone gear

What lubrication is required for herringbone gears?

Proper lubrication is essential for the smooth and efficient operation of herringbone gears. The lubricant used in herringbone gear systems plays a crucial role in reducing friction, minimizing wear, dissipating heat, and protecting the gear surfaces. Here’s a detailed explanation of the lubrication requirements for herringbone gears:

  • Lubricant Selection: When selecting a lubricant for herringbone gears, it is important to consider factors such as load, speed, operating temperature, and environmental conditions. The lubricant should have suitable viscosity and additives to provide adequate film thickness and maintain lubrication under the anticipated operating conditions. Commonly used lubricants for herringbone gears include mineral oils, synthetic oils, and specialty lubricants formulated for gear applications.
  • Viscosity: The viscosity of the lubricant is crucial for ensuring proper lubrication and film formation between the gear teeth. The lubricant should have sufficient viscosity to create an effective lubricating film that separates the gear surfaces and reduces friction. It should be able to maintain this film under the operating conditions, ensuring smooth gear engagement and minimizing wear. The appropriate viscosity grade is typically specified by the gear system manufacturer based on the gear design, load, and speed.
  • Lubricant Application: The lubricant should be applied to the gear system in the appropriate manner to ensure uniform coverage and distribution. In most cases, herringbone gears are lubricated by immersion or splash lubrication, where the gears partially or fully submerge in the lubricant or have the lubricant splashed onto their surfaces. The lubricant should be directed towards the gear meshing area to ensure proper lubrication of the gear teeth and contact surfaces.
  • Lubricant Maintenance: Regular lubricant maintenance is essential to ensure the continued performance and longevity of herringbone gears. This includes monitoring the lubricant condition, checking for contamination, and replenishing or replacing the lubricant as necessary. Over time, the lubricant may degrade, become contaminated with particles or moisture, or lose its effectiveness. Regular inspections and lubricant analysis can help identify any issues and determine the appropriate maintenance intervals for lubricant replacement or replenishment.
  • Sealing and Contamination Prevention: Proper sealing of the gear housing or enclosure is important to prevent the ingress of contaminants, such as dust, dirt, or moisture, into the gear system. Contaminants can degrade the lubricant and lead to increased wear and damage to the gear surfaces. Seals, gaskets, or other appropriate sealing mechanisms should be employed to minimize the risk of contamination and maintain the integrity of the lubricant.

It is important to consult the gear system manufacturer’s recommendations and specifications regarding lubrication requirements. The manufacturer may provide specific guidelines regarding lubricant type, viscosity, application methods, and maintenance procedures based on the gear design and intended operating conditions. Adhering to these guidelines will help ensure optimal lubrication and maximize the performance and service life of herringbone gears.

herringbone gear

What is a herringbone gear and how does it work?

A herringbone gear, also known as a double helical gear, is a specialized type of gear with a unique tooth design. Here’s a detailed explanation of what a herringbone gear is and how it works:

A herringbone gear consists of two helical gear sections that are mirror images of each other and are joined together to form a V-shaped or herringbone-shaped tooth profile. Unlike conventional helical gears, which have a single helix angle and a continuous spiral tooth profile, herringbone gears have two opposing helix angles, resulting in a “V” shape when viewed from the end.

The primary advantage of the herringbone gear design is its ability to eliminate axial thrust or end thrust forces that are generated in helical gears. In a conventional helical gear, the helix angle of the teeth causes an axial force along the gear’s axis during rotation. This axial force can create significant thrust loads that need to be counteracted using thrust bearings or other mechanisms.

By using the double helix design of herringbone gears, the opposing helix angles cancel out the axial forces generated by each helical section. This cancellation of axial forces eliminates the need for thrust bearings and allows herringbone gears to transmit torque smoothly without axial movement or thrust loads.

When a herringbone gear is in operation, the angled teeth of the two helical sections engage with each other, similar to how helical gears mesh. The contact between the teeth occurs gradually, starting from one end of the gear and progressing towards the other end. The overlapping or interlocking tooth profiles ensure a continuous and smooth transfer of power.

The herringbone gear design offers several advantages:

  • Axial Load Balancing: The opposing helix angles in herringbone gears balance out the axial forces, eliminating the need for thrust bearings and reducing wear on the gear teeth.
  • Increased Load Capacity: The V-shaped tooth profile of herringbone gears provides increased tooth contact area compared to a single helix gear. This leads to improved load distribution and higher load-carrying capacity.
  • Reduced Vibration and Noise: The double helix design of herringbone gears helps cancel out vibrations and reduce noise during operation. The opposing helix angles minimize tooth deflection and ensure smoother engagement between the gear teeth.
  • Bidirectional Power Transmission: Herringbone gears can transmit power in both directions due to their symmetrical tooth profiles. This makes them suitable for applications where reversing or bidirectional power transmission is required.
  • High Efficiency: The continuous and gradual engagement of the herringbone gear teeth results in improved efficiency by reducing sliding friction and minimizing backlash.

Herringbone gears are commonly used in various industrial applications, including power transmission systems, heavy machinery, oil and gas equipment, marine propulsion systems, and high-speed gearboxes. Their unique design and benefits make them well-suited for applications that require high torque transmission, smooth operation, and minimal axial thrust.

China factory OEM CNC Machining Large Forged Steel Herringbone Cylindrical Gear Used in Large Machinery with high qualityChina factory OEM CNC Machining Large Forged Steel Herringbone Cylindrical Gear Used in Large Machinery with high quality
editor by CX 2023-09-04

TAGs:

Herring Bone Gear

As one of the herringbone gear manufacturers, suppliers, and exporters of mechanical products, We offer herringbone gear and many other products.

Please get in touch with us for details.

Manufacturer supplier exporter of herringbone gear.

Recent Posts